Optimal Path Planning Algorithm with Built-In Velocity Profiling for Collaborative Robot

Author:

Szczepanski Rafal1ORCID,Erwinski Krystian1ORCID,Tejer Mateusz1ORCID,Daab Dominika2ORCID

Affiliation:

1. Department of Automatics and Measurement Systems, Institute of Engineering and Technology, Faculty of Physics Astronomy and Informatics, Nicolaus Copernicus University, Wilenska 7, 87-100 Torun, Poland

2. Department of Geomatics and Cartography, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland

Abstract

This paper proposes a method for solving the path planning problem for a collaborative robot. The time-optimal, smooth, collision-free B-spline path is obtained by the application of a nature-inspired optimization algorithm. The proposed approach can be especially useful when moving items that are delicate or contain a liquid in an open container using a robotic arm. The goal of the optimization is to obtain the shortest execution time of the production cycle, taking into account the velocity, velocity and jerk limits, and the derivative continuity of the final trajectory. For this purpose, the velocity profiling algorithm for B-spline paths is proposed. The methodology has been applied to the production cycle optimization of the pick-and-place process using a collaborative robot. In comparison with point-to-point movement and the solution provided by the RRT* algorithm with the same velocity profiling to ensure the same motion limitations, the proposed path planning algorithm decreased the entire production cycle time by 11.28% and 57.5%, respectively. The obtained results have been examined in a simulation with the entire production cycle visualization. Moreover, the smoothness of the movement of the robotic arm has been validated experimentally using a robotic arm.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3