Carbohydrate Content Classification Using Postprandial Heart Rate Responses from Non-Invasive Wearables

Author:

Chikwetu Lucy1ORCID,Younes Rabih1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

Abstract

The rising incidence of type 2 diabetes underscores the need for technological innovations aimed at enhancing diabetes management by aiding individuals in monitoring their dietary intake. This has resulted in the development of technologies capable of tracking the timing and content of an individual’s meals. However, the ability to use non-invasive wearables to estimate or classify the carbohydrate content of the food an individual has just consumed remains a relatively unexplored area. This study investigates carbohydrate content classification using postprandial heart rate responses from non-invasive wearables. We designed and developed timeStampr, an iOS application for collecting timestamps essential for data labeling and establishing ground truth. We then conducted a pilot study in controlled, yet naturalistic settings. Data were collected from 23 participants using an Empatica E4 device worn on the upper arm, while each participant consumed either low-carbohydrate or carbohydrate-rich foods. Due to sensor irregularities with dark skin tones and non-compliance with the study’s health criteria, we excluded data from three participants. Finally, we configured and trained a Light Gradient Boosting Machine (LGBM) model for carbohydrate content classification. Our classifiers demonstrated robust performance, with the carbohydrate content classification model consistently achieving at least 84% in accuracy, precision, recall, and AUCROC within a 60 s window. The results of this study demonstrate the potential of postprandial heart rate responses from non-invasive wearables in carbohydrate content classification.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3