A Magneto-Electric Device for Fluid Pipelines with Vibration Damping and Vibration Energy Harvesting

Author:

Wang Yi-Ren1ORCID,Huang Po-Chuan1ORCID

Affiliation:

1. Department of Aerospace Engineering, Tamkang University, Tamsui District, NewTaipei City 25137, Taiwan

Abstract

This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole–dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton’s Principle and the Biot–Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity.

Funder

National Science and Technology Council, Taiwan

Taiwan Space Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3