Abstract
Wind turbines work in strong background noise, and multiple faults often occur where features are mixed together and are easily misjudged. To extract composite fault of rolling bearings from wind turbines, a new hybrid approach was proposed based on multi-point optimal minimum entropy deconvolution adjusted (MOMEDA) and the 1.5-dimensional Teager kurtosis spectrum. The composite fault signal was deconvoluted using the MOMEDA method. The deconvoluted signal was analyzed by applying the 1.5-dimensional Teager kurtosis spectrum. Finally, the frequency characteristics were extracted for the bearing fault. A bearing composite fault signal with strong background noise was utilized to prove the validity of the method. Two actual cases on bearing fault detection were analyzed with wind turbines. The results show that the method is suitable for the diagnosis of wind turbine compound faults and can be applied to research on the health behavior of wind turbines.
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献