Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines

Author:

Xiang LingORCID,Su Hao,Li Ying

Abstract

Wind turbines work in strong background noise, and multiple faults often occur where features are mixed together and are easily misjudged. To extract composite fault of rolling bearings from wind turbines, a new hybrid approach was proposed based on multi-point optimal minimum entropy deconvolution adjusted (MOMEDA) and the 1.5-dimensional Teager kurtosis spectrum. The composite fault signal was deconvoluted using the MOMEDA method. The deconvoluted signal was analyzed by applying the 1.5-dimensional Teager kurtosis spectrum. Finally, the frequency characteristics were extracted for the bearing fault. A bearing composite fault signal with strong background noise was utilized to prove the validity of the method. Two actual cases on bearing fault detection were analyzed with wind turbines. The results show that the method is suitable for the diagnosis of wind turbine compound faults and can be applied to research on the health behavior of wind turbines.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3