Damage Mechanism of HgCdTe Focal Plane Array Detector Irradiated Using Mid-Infrared Pulse Laser

Author:

Zhang Yin12,Zheng Changbin1,Liu Yang1,Wang Yunzhe12,Xu Yongbo12,Shao Junfeng1

Affiliation:

1. State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130022, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

To investigate the damage threshold and mechanism of a mid-infrared HgCdTe focal plane array (FPA) detector, relevant experimental and theoretical studies were conducted. The line damage threshold of a HgCdTe FPA detector may be within the range of 0.59 Jcm−2 to 0.71 Jcm−2. The full frame damage threshold of the detector may be in the range of 0.86 Jcm−2 to 1.17 Jcm−2. Experimental results showed that when the energy density reaches 1.17 Jcm−2, the detector exhibits irreversible full frame damage and is completely unable to image. Based on the finite element method, a three-dimensional model of HgCdTe FPAs detector was established to study the heat transfer mechanism, internal stress, and damage sequence. When HgCdTe melts, we think that the detector is damaged. Under these conditions, the theoretical damage threshold calculated using the detector model is 0.55 Jcm−2. The difference between theoretical and experimental values was analyzed. The relationship between damage threshold and pulse width was also studied. It was found that when the pulse width is less than 1000 ns, the damage threshold characterized by peak power density is inversely proportional to pulse width. This relationship can help us predict the experimental damage threshold of an FPA detector. This model is reasonable and convenient for studying the damage of FPA detectors with a mid-infrared pulse laser. The research content in this article has important reference significance for the damage and protection of HgCdTe FPA detectors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3