Ultrafast Laser-Excited Optical Emission of Xe under Loose-Focusing Conditions

Author:

Burger Miloš12,Latty Kyle S.3,Frigerio Leandro12ORCID,Arnaud Thiago3ORCID,Hartig Kyle C.3ORCID,Jovanovic Igor12ORCID

Affiliation:

1. Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA

2. Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA

3. Nuclear Engineering Program, Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

The optical filament-based radioxenon sensing can potentially overcome the constraints of conventional detection techniques that are relevant for nuclear security applications. This study investigates the spectral signatures of pure xenon (Xe) when excited by ultrafast laser filaments at near-atmosphericpressure and in short and loose-focusing conditions. The two focusing conditions lead to laser intensity differences of several orders of magnitude and different plasma transient behavior. The gaseous sample was excited at atmospheric pressure using ∼7 mJ pulses with a 35 fs pulse duration at 800 nm wavelength. The optical signatures were studied by time-resolved spectrometry and imaging in orthogonal light collection configurations in the ∼400 nm (VIS) and ∼800 nm (NIR) spectral regions. The most prominent spectral lines of atomic Xe are observable in both focusing conditions. An on-axis light collection from an atmospheric air–Xe plasma mixture demonstrates the potential of femtosecond filamentation for the remote sensing of noble gases.

Funder

Department of Defense, Defense Threat Reduction Agenc

Department of Energy, National Nuclear Security Administration, Consortium for Monitoring, Technology, and Verification

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3