Explainable Learning-Based Timeout Optimization for Accurate and Efficient Elephant Flow Prediction in SDNs

Author:

Liao Ling Xia1,Zhao Changqing1,Lai Roy Xiaorong2,Chao Han-Chieh345ORCID

Affiliation:

1. School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China

2. Confederal Networks Inc., Seattle, WA 98055, USA

3. Department of Artificial Intelligence, Tamkang University, New Taipei City 251301, Taiwan

4. Department of Electrical Engineering, National Dong Hwa University, Hualien 974301, Taiwan

5. Institute of Computer Science and Innovation, UCSI University, Kuala Lumpur 56000, Malaysia

Abstract

Accurately and efficiently predicting elephant flows (elephants) is crucial for optimizing network performance and resource utilization. Current prediction approaches for software-defined networks (SDNs) typically rely on complete traffic and statistics moving from switches to controllers. This leads to an extra control channel bandwidth occupation and network delay. To address this issue, this paper proposes a prediction strategy based on incomplete traffic that is sampled by the timeouts for the installation or reactivation of flow entries. The strategy involves assigning a very short hard timeout (Tinitial) to flow entries and then increasing it at a rate of r until flows are identified as elephants or out of their lifespans. Predicted elephants are switched to an idle timeout of 5 s. Logistic regression is used to model elephants based on a complete dataset. Bayesian optimization is then used to tune the trained model Tinitial and r over the incomplete dataset. The process of feature selection, model learning, and optimization is explained. An extensive evaluation shows that the proposed approach can achieve over 90% generalization accuracy over 7 different datasets, including campus, backbone, and the Internet of Things (IoT). Elephants can be correctly predicted for about half of their lifetime. The proposed approach can significantly reduce the controller–switch interaction in campus and IoT networks, although packet completion approaches may need to be applied in networks with a short mean packet inter-arrival time.

Funder

National Nature Science Foundation of China

Ministry of Science and Technology of China

National Nature Science Foundation of Guangxi

Guangxi Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3