Local Route Planning for Collision Avoidance of Maritime Autonomous Surface Ships in Compliance with COLREGs Rules

Author:

Namgung HoORCID

Abstract

A maritime autonomous surface ship (MASS) ensures safety and effectiveness during navigation using its ability to prevent collisions with a nearby target ship (TS). This avoids the loss of human life and property. Therefore, collision avoidance of MASSs has been actively researched recently. However, previous studies did not consider all factors crucial to collision avoidance in compliance with the International Regulations for Preventing Collisions at Sea (COLREGs) Rules 5, 7, 8, and 13–17. In this study, a local route-planning algorithm that takes collision-avoidance actions in compliance with COLREGs Rules using a fuzzy inference system based on near-collision (FIS-NC), ship domain (SD), and velocity obstacle (VO) is proposed. FIS-NC is used to infer the collision risk index (CRI) and determine the time point for collision avoidance. Following this, I extended the VO using the SD to secure the minimum safe distance between the MASS and the TS when they pass each other. Unlike previous methods, the proposed algorithm can be used to perform safe and efficient navigation in terms of near-collision accidents, inferred CRI, and deviation from the course angle route by taking collision-avoidance actions in compliance with COLREGs Rules 5, 7, 8, and 13–17.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference32 articles.

1. Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS),2018

2. Convention on the international regulations for preventing collisions at sea (COLREGs);Resolution A,1972

3. Path planning and collision avoidance for autonomous surface vehicles II: a comparative study of algorithms

4. A Guide to the Collision Avoidance Rules;Cockcroft,2011

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3