A Systemic View of Future Mobility Scenario Impacts on and Their Implications for City Organizational LCA: The Case of Autonomous Driving in Vienna

Author:

Cremer AlexanderORCID,Müller Katrin,Finkbeiner MatthiasORCID

Abstract

Autonomous vehicles (AV) are expected to significantly reshape urban mobility. Whether advancements at vehicle level also translate into positive environmental outcomes at city level is still uncertain. We investigate under which conditions a city could enable low emission AV mobility and what challenges are to be expected along the way from an environmental point of view. We build upon our recent environmental performance study of Vienna and combine city organizational life cycle assessment (city-OLCA) with AV transport models from literature for three AV use cases: an own AV, a shared AV, and a shared AV ride service. Most cases lower Vienna’s passenger capacity (by up to 28%) and increase motorized road traffic by a maximum of 49% (own AVs). Traffic relief is observed for shared AVs (−40%) if accompanied by a conventional car ban. This case reduces transport related GHG emissions compared to both Vienna’s current baseline (−60%) and a future electrified transportation system (−4.2%). These transformations have also shifted emission responsibility to the public level. While Vienna’s total GHG emissions could be reduced by 12%, the city’s emission responsibility increases from 25% to 32%. Efficient mass transit, the electrification of the mobility sector and grid decarbonization are key to reducing transport emissions in Vienna. The direction of GHG emission development will be determined by the extent to which these conditions are promoted. AV mobility probably will not be a main contributor.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy;Manyika,2013

2. Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?

3. Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice

4. Autonomous Vehicle Implementation Predictions- Implications for Transport Planning;Litman,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3