Responses and Differences in Tolerance to Water Shortage under Climatic Dryness Conditions in Seedlings from Quercus spp. and Andalusian Q. ilex Populations

Author:

San-Eufrasio Bonoso,Sánchez-Lucas Rosa,López-Hidalgo CristinaORCID,Guerrero-Sánchez Victor M.ORCID,Castillejo María ÁngelesORCID,Maldonado-Alconada Ana María,Jorrín-Novo Jesús V.ORCID,Rey María-DoloresORCID

Abstract

Analyzing differences in tolerance to drought in Quercus spp., and the characterization of these responses at the species and individual population level, are imperative for the selection of resilient elite genotypes in reforestation programs. The main objective of this work was to evaluate differences in the response and tolerance to water shortage under in five Quercus spp. and five Andalusian Q. ilex populations at the inter- and intraspecies level. Six-month-old seedlings grown in perlite were subjected to drought treatments by withholding water for 28 days under mean 37 °C temperature, 28 W m−2 solar irradiance, and 41% humidity. The use of perlite as the substrate enabled the establishment of severe drought stress with reduction in water availability from 73% (field capacity) to 28% (dryness), corresponding to matric potentials of 0 and −30 kPa. Damage symptoms, mortality rate, leaf water content, photosynthetic, and biochemical parameters (amino acids, sugars, phenolics, and pigments) were determined. At the phenotypic level, based on damage symptoms and mortality, Q. ilex behaved as the most drought tolerant species. Drought caused a significant decrease in leaf fluorescence, photosynthesis rate, and stomatal conductance in all Quercus spp. analyzed, being less pronounced in Q. ilex. There were not differences between irrigated and non-irrigated Q. ilex seedlings in the content of sugar and photosynthetic pigments, while the total amino acid and phenolic content significantly increased under drought conditions. As a response to drought, living Q. ilex seedlings adjust stomata opening and gas exchange, and keep hydrated, photosynthetically active, and metabolically competent. At the population level, based on damage symptoms, mortality, and physiological parameters, the eastern Andalusian populations were more tolerant than the western ones. These observations inform the basis for the selection of resilient genotypes to be used in breeding and reforestation programs.

Publisher

MDPI AG

Subject

Forestry

Reference83 articles.

1. Quercus L.;Franco,1990

2. Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests;Nixon,2006

3. The functioning, management and persistence of dehesas;Moreno,2009

4. The role of climate change in the widespread mortality of holm oak in open woodlands of Southwestern Spain

5. Constructed and degraded? Origin and development of the Spanish dehesa landscape, with a case study on two municipalities;Plieninger;Erde,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3