FEA and Machine Learning Techniques for Hidden Structure Analysis

Author:

Shi XijinORCID,Hsieh Sheng-JenORCID,Romero Roseli Aparecida Francelin

Abstract

This study focuses on investigating and predicting two hidden structures: plant root system architecture and non-visible bubbles in plexiglass. Current approaches are damaging, expensive, or time-consuming. Infrared imaging was used to study the root structure and depth of small plants and to detect the diameter and depth of bubbles in plexiglass. A finite element analysis (FEA) model was built to simulate the infrared imaging process to realize the detection and prediction given the amount of heat flux required to obtain thermal images and data. For the root system, based on a tree structure thermal profile over time derived from the FEA model, a line scan method was developed to predict root structure. The main root branches can be viewed from the detection results. Polynomial regression, support vector machine (SVM), and artificial neural network (ANN) models were designed to predict root depth. For bubble defects, three ANN models were developed to predict bubble size using temperature data generated by the FEA model. Results indicated that these models provide valid predictions. Statistical tests were applied to evaluate and compare the above predictive models. Results suggest that infrared imaging and machine learning models can be used to provide information on both hidden structures.

Funder

Texas A&M University Triads for Transformation Seed Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3