Seaweed Essential Oils as a New Source of Bioactive Compounds for Cyanobacteria Growth Control: Innovative Ecological Biocontrol Approach

Author:

El Amrani Zerrifi Soukaina,El Khalloufi Fatima,Mugani RichardORCID,El Mahdi Redouane,Kasrati AyoubORCID,Soulaimani Bouchra,Barros LillianORCID,Ferreira Isabel C. F. R.ORCID,Amaral Joana S.ORCID,Finimundy Tiane CristineORCID,Abbad Abdelaziz,Oudra Brahim,Campos Alexandre,Vasconcelos VitorORCID

Abstract

The application of natural compounds extracted from seaweeds is a promising eco-friendly alternative solution for harmful algae control in aquatic ecosystems. In the present study, the anti-cyanobacterial activity of three Moroccan marine macroalgae essential oils (EOs) was tested and evaluated on unicellular Microcystis aeruginosa cyanobacterium. Additionally, the possible anti-cyanobacterial response mechanisms were investigated by analyzing the antioxidant enzyme activities of M. aeruginosa cells. The results of EOs GC–MS analyses revealed a complex chemical composition, allowing the identification of 91 constituents. Palmitic acid, palmitoleic acid, and eicosapentaenoic acid were the most predominant compounds in Cystoseira tamariscifolia, Sargassum muticum, and Ulva lactuca EOs, respectively. The highest anti-cyanobacterial activity was recorded for Cystoseira tamariscifolia EO (ZI = 46.33 mm, MIC = 7.81 μg mL−1, and MBC = 15.62 μg mL−1). The growth, chlorophyll-a and protein content of the tested cyanobacteria were significantly reduced by C. tamariscifolia EO at both used concentrations (inhibition rate >67% during the 6 days test period in liquid media). Furthermore, oxidative stress caused by C. tamariscifolia EO on cyanobacterium cells showed an increase of the activities of superoxide dismutase (SOD) and catalase (CAT), and malondialdehyde (MDA) concentration was significantly elevated after 2 days of exposure. Overall, these experimental findings can open a promising new natural pathway based on the use of seaweed essential oils to the fight against potent toxic harmful cyanobacterial blooms (HCBs).

Funder

FCT

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3