Abstract
Increasingly frequent, high-intensity rain events associated with climatic change are driving urban drainage systems to function beyond their design discharge capacity. It has become an urgent issue to mitigate the water resource management challenge. To address this problem, a real-time procedure for predicting the inundation risk in an urban drainage system was developed. The real-time procedure consists of three components: (i) the acquisition and forecast of rainfall data; (ii) rainfall-runoff modeling; and (iii) flood inundation mapping. This real-time procedure was applied to a drainage system in the Sukhumvit area of Bangkok, Thailand, to evaluate its prediction efficacy. The results showed precisely that the present real-time procedure had high predictability in terms of both the water level and flood inundation area mapping. It could also determine hazardous areas with a certain amount of lead time in the drainage system of the Sukhumvit area within an hour of rainfall data. These results show the real-time procedure could provide accurate flood risk warning, resulting in more time to implement flood management measures such as pumping and water gate operations, or evacuation.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献