Analysis of Engineering Characteristics and Microscopic Mechanism of Red Mud–Bauxite Tailings Mud Foam Light Soil

Author:

Ou Xiaoduo,Chen Shengjin,Jiang Jie,Qin Jinxi,Tan Zhijie

Abstract

In order to effectively utilize aluminum industrial waste—red mud and bauxite tailings mud—and reduce the adverse impact of waste on the environment and occupation of land resources, a red mud–bauxite tailings mud foam lightweight soil was developed based on the existing research results. Experiments were conducted to investigate the mechanical properties and microscopic characteristics of the developed materials with different proportions of red mud and bauxite tailings mud. Results show that with the increase in red mud content, the wet density and fluidity of the synthetic sample was increased. With 16% red mud content, the water stability coefficient of the synthetic sample reached its maximum of 0.826, as well as the unconfined compressive strength (UCS) of the sample cured for 28 d (1.056 MPa). SEM images reveal that some wastes of the sample without red mud were agglomerated, the peripheral hydration products were less wrapped, and when the amount of red mud was 16%, the hydration products tightly wrapped the waste particles and increased the structural compactness. The final concentration of alkali leaching of samples increased with the addition of red mud. The maximum concentration of alkali leaching was 384 mg/L for the group with the addition of red mud of 16%. Based on the obtained mechanical strength and alkali release analysis, the sample B24R16 was selected as the optimum among all tested groups. This study explored a way to reuse aluminum industrial waste, and the results are expected to be applied to roadbed and mining filling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3