Mechanical Properties and Durability Performance of Recycled Aggregate Concrete Containing Crumb Rubber

Author:

Ataria Robert B.ORCID,Wang Yong C.

Abstract

Despite extensive research studies, recycled aggregates and worn-out tyres of motor vehicles are still not fully reused and are hence disposed of in ways that are damaging to the environment. Several studies have been carried out on recycled aggregate and rubberized concrete, but very limited studies are conducted on rubber recycled aggregate concrete. This study focuses on the workability, mechanical properties and durability performance of concrete made with 100% recycled aggregates and crumb rubber at different replacement level (5%, 10%, 15% and 20%). The first stage of the study covers the effect of incorporating crumb rubber at different concentration on the workability and mechanical properties of recycled aggregate concrete. The results revealed that the workability and mechanical properties of the recycled aggregate concrete can be used for structural applications when 5% of crumb rubber are used to replace recycled aggregates. The 28-days compressive strength of the rubberized recycled aggregate concrete with 5% crumb rubber concentration is reduced by 21.1% and 32.8% when compared to recycled aggregate concrete and control concrete, respectively. The second stage of the study assesses the durability performance of the recycled aggregate concrete with 5% crumb rubber concentration. The 5% crumb rubber content for durability tests was considered because the ultrasonic pulse velocity tests revealed that the quality of the recycled aggregate concrete is questionable if the concentration of crumb rubber particles is beyond 5%. The durability performance using the surface resistivity test also shows that the chloride ion penetration of recycled aggregates concrete with 5% crumb rubber replacement is moderate using air dried curing technique and high using the water bath curing method. Hence the study suggests the use of rubber recycled aggregate concrete for applications were the exposure condition is not extreme.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3