A Blockchain Approach for Migrating a Cyber-Physical Water Monitoring Solution to a Decentralized Architecture

Author:

Pahontu Bogdan-Ionut1,Petcu Adrian2ORCID,Predescu Alexandru1ORCID,Arsene Diana Andreea1,Mocanu Mariana1ORCID

Affiliation:

1. Computer Science Department, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

2. Department of Telecommunications, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

Abstract

Water is one of the most important resources in our lives, and because of this, the interest in water management systems is growing constantly. A primary concern regarding urban water distribution is how to build robust solutions to facilitate water monitoring flows with the support of consumer involvement. Crowdsensing solutions contribute to the involvement in social platforms for increased awareness about the importance of water resources based on incentives and rewards. Blockchain is one of the technologies that has become increasingly popular in the last few years. The possibility of using this architecture in such different sectors while integrating emerging concepts, such as crowdsensing, the Internet of Things, serious gaming, and decision support systems, offers a lot of alternatives and approaches for designing modern applications. This paper aims to present how these technologies can be combined in order to migrate the functionalities of a water distribution management system from a centralized architecture to a decentralized one by leveraging blockchain technologies. The proposed application was designed to facilitate incident reporting flows in public water distribution networks. The proposed solution was to migrate the rewarding mechanisms using the Ethereum infrastructure. The novelty of this solution is determined by the introduction of this decentralized approach into the architecture and also by increasing customer interest by offering tradeable rewards and dynamic subscription discounts. This results in a new decentralized architecture that allows for more transparent interactions between the water provider and clients and increases customer engagement to contribute to water reporting flows.

Funder

UEFISCDI

Ministry of Investments and European Projects

National University of Science and Technology Politehnica Bucharest

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3