Abstract
Increasing the efficiency of using gypsum binders can be carried out by using not natural gypsum raw materials, but calcium sulfate-containing waste from various industries (phosphogypsum, borogypsum, citrogypsum, etc.). As the main source material in the work, we used gypsum-containing waste from a faience factory in the form of waste molds for casting dishes, souvenirs and plumbing fixtures. It has been established that the optimal binding system is formed by mixing powders of dihydrate technogenic gypsum from a coarse and fine earthenware factory with average particle diameters of 3.473 microns and 3.065 microns in a percentage ratio of 30:70, respectively. Using a computer software developed by the authors, which makes it possible to simulate the microstructure of a raw mixture taking into account the contact interaction of particles and calculate the average coordination number, models of binary packing of particles were constructed at various ratios of their diameters. Studies of the strength of composites obtained on the basis of bidisperse systems have shown the presence of an extremum in the region of mixtures containing 30% coarse powder. With optimal packing, a large number of phase contacts are formed due to the regulation of the grain composition of the bidisperse system. It was revealed that a brick based on the waste of two-water gypsum from earthenware production has 2.5–5 times better characteristics of compressive strength than traditional building wall products based on natural gypsum. At the same time, the strength immediately after molding is more than 3 times higher than that of traditional gypsum products. Even higher indicators are achieved when adding microcalcite in addition to the waste of earthenware production, in this case, the compressive strength is 3–6 times higher, and the strength immediately after molding is almost 3 times higher than that of traditional gypsum products.
Funder
Russian Science Foundation
Subject
General Materials Science
Reference28 articles.
1. Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC)
2. Crystallization and Phase Stability of CaSO 4 and CaSO 4 - Based Salts
3. Chemical and Physical Effects on Engineering Properties of Gypseous Sub-Grade Soil;Kifae;Al-Qadisiyah J. Eng. Sci.,2010
4. Fiber gypsum concrete composites with using volcanic tuffsawing waste;Khezhev;ARPN J. Eng. Appl. Sci.,2018
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献