Enhancements on Flame Resistance by Inorganic Silicate-Based Intumescent Coating Materials

Author:

Chen Sin-Nan,Li Pei-Kai,Hsieh Tar-Hwa,Ho Ko-Shan,Hong Yu-Meng

Abstract

Flame-retardant coatings have drawn much attention in recent years. In this study, an inorganic sodium silicate-based intumescent flame-resistance coating with an excellent flameproof properties is developed by mainly utilizing sodium silicate as the ceramizable binder, via hydrolysis and self-condensation reaction. Fly ash, metakaoline, and wollastonite behave as supplement cementing materials. Major formulation encompasses the combination of the ammonium polyphosphate and pentaerythritol as the flame-retardant additives, and aluminum hydroxide or expandable graphite as the intumescence-improving filler agents. Expandable graphite was found to play an important role in the eventual performance of flame-resistance testing. The results showed that solid interaction forces can be formed between metakaoline and sodium silicate, resulting in a similar material to geopolymer with excellent physical properties. After high-temperature flame testing, a densely complex protective layer of carbon-char created on top of the robust silicon dioxide networks offers notable flame resistance. An optimal ratio in this inorganic intumescent coating contains sodium silicate—metakaoline (weight ratio = 9:1)—ammonium polyphosphate and pentaerythritol, aluminum hydroxide (3, 3, 10 wt.%)—expandable graphite (1 wt.%), which can create 4.7 times higher expansion ratio compared with neat sodium silicate matrix. The results of flame testing demonstrate only 387.1 °C and 506.3 °C on the back surface of steel substrate after one and three hours flaming (>1000 °C) on the other surface, respectively, which could meet the requirements according to the level of fire rating.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3