A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites

Author:

Jongbloed Bram C. P.ORCID,Teuwen Julie J. E.ORCID,Benedictus RinzeORCID,Villegas Irene FernandezORCID

Abstract

Continuous ultrasonic welding is a promising technique for joining thermoplastic composites structures together. The aim of this study was to gain further insight into what causes higher through-the-thickness heating in continuous ultrasonic welding of thermoplastic composites as compared to the static process. Thermocouples were used to measure temperature evolutions at the welding interface and within the adherends. To understand the mechanisms causing the observed temperature behaviours, the results were compared to temperature measurements from an equivalent static welding process and to the predictions from a simplified heat transfer model. Despite the significantly higher temperatures measured at the welding interface for the continuous process, viscoelastic bulk heat generation and not thermal conduction from the interface was identified as the main cause of higher through-the-thickness heating in the top adherend. Interestingly the top adherend seemed to absorb most of the vibrational energy in the continuous process as opposed to a more balanced energy share between the top and bottom adherend in the static process. Finally, the higher temperatures at the welding interface in continuous ultrasonic welding were attributed to pre-heating of the energy director due to the vibrations being transmitted downstream of the sonotrode, to reduced squeeze-flow of energy director due to the larger adherend size, and to heat flux originating downstream as the welding process continues.

Funder

European Union’s Horizon 2020 Clean Sky 2

Publisher

MDPI AG

Subject

General Materials Science

Reference29 articles.

1. Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review

2. Process and performance evaluation of ultrasonic, induction and resistance welding of advanced thermoplastic composites

3. Fusion Bonding/Welding of Thermoplastic Composites

4. New thermoplastic composite design concepts and their automated manufacture;Offringa;JEC Compos. Mag.,2010

5. Thermoplastic composites gain leading edge on the A380;Gardiner;High-Perform. Compos.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3