Reliability-Based Low Fatigue Life Analysis of Turbine Blisk with Generalized Regression Extreme Neural Network Method

Author:

Zhang Chunyi,Wei Jingshan,Jing Huizhe,Fei ChengweiORCID,Tang Wenzhong

Abstract

Turbine blisk low cycle fatigue (LCF) is affected by various factors such as heat load, structural load, operation parameters and material parameters; it seriously influences the reliability and performance of the blisk and aeroengine. To study the influence of thermal-structural coupling on the reliability of blisk LCF life, the generalized regression extreme neural network (GRENN) method was proposed by integrating the basic thoughts of generalized regression neural network (GRNN) and the extreme response surface method (ERSM). The mathematical model of the developed GRENN method was first established in respect of the LCF life model and the ERSM model. The method and procedure for reliability and sensitivity analysis based on the GRENN model were discussed. Next, the reliability and sensitivity analyses of blisk LCF life were performed utilizing the GRENN method under a thermal-structural interaction by regarding the randomness of gas temperature, rotation speed, material parameters, LCF performance parameters and the minimum fatigue life point of the objective of study. The analytical results reveal that the reliability degree was 0.99848 and the fatigue life is 9419 cycles for blisk LCF life when the allowable value is 6000 cycles so that the blisk has some life margin relative to 4500 cycles in the deterministic analysis. In comparison with ERSM, the computing time and precision of the proposed GRENN under 10,000 simulations is 1.311 s and 99.95%. This is improved by 15.18% in computational efficiency and 1.39% in accuracy, respectively. Moreover, high efficiency and high precision of the developed GRENN become more obvious with the increasing number of simulations. In light of the sensitivity analysis, the fatigue ductility index and temperature are the key factors of determining blisk LCF life because their effect probabilities reach 41% and 26%, respectively. Material density, rotor speed, the fatigue ductility coefficient, the fatigue strength coefficient and the fatigue ductility index are also significant parameters for LCF life. Poisson’s ratio and elastic modulus of materials have little effect. The efforts of this paper validate the feasibility and validity of GRENN in the reliability analysis of blisk LCF life and give the influence degrees of various random parameters on blisk LCF life, which are promising to provide useful insights for the probabilistic optimization of turbine blisk LCF life.

Funder

National Natural Science Foundation of China

Start-up Research Funding of Fudan University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3