Investigation on the Flame Retardant Properties and Fracture Toughness of DOPO and Nano-SiO2 Modified Epoxy Novolac Resin and Evaluation of Its Combinational Effects

Author:

Häublein Markus,Peter KarinORCID,Bakis Gökhan,Mäkimieni Roi,Altstädt Volker,Möller Martin

Abstract

In this study, the flame-retardant, thermal and mechanical properties of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and nano-SiO2 modified epoxy novolac resin is evaluated, and the combinational effects of both additives are verified. As a hardener, an isophorone diamine (IPDA) and polyetheramine blend is stoichiometrically added to obtain a low viscous epoxy resin system, suitable for resin injection and infusion techniques. The glass transition temperature (Tg) and the silica dispersion quality is affected by the DOPO modification and the nano silica particles. The flame-retardant (FR) and mechanical properties of the additives are investigated separately. The fracture toughness could be increased with the incorporation of both FR additives; however, the effect is deteriorated for higher DOPO amount which is referred to silica particle agglomeration and consequently reduced shear yielding mechanism. Flame-retardant properties, especially the peak heat release rate (pHRR) and the total heat release (THR) could be decreased from 1373.0 kW/m2 of neat novolac to 646.6 kW/m2 measured by resins with varying phosphorous and silica content. Thermogravimetric analysis (TGA) measurements show the formation of a high temperature stable char layer above 800 °C which is attributed to both additives. Scanning electron microscopy (SEM) images are taken to get deeper information of the flame-retardant mechanism, showing a dense and stable char layer for a certain DOPO silica mixture which restrains the combustible gases from the burning zone in the cone calorimeter test and influences the fire behavior of the epoxy resin.

Funder

Allianz Industrie Forschung

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3