Analysis of Controllability in Cyber–Physical Power Systems under a Novel Load-Capacity Model

Author:

Ge Yaodong1ORCID,Li Yan1ORCID,Xu Tianqi1ORCID,He Zhaolei2,Zhu Quancong3

Affiliation:

1. Key Laboratory of Cyber–Physical Power System of Yunnan Colleges and Universities, Yunnan Minzu University, Kunming 650504, China

2. Measurement Verification Department of the Measurement Center of Yunnan Power Grid Co., Ltd., Kunming 650217, China

3. Power Science Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, China

Abstract

In cyber–physical power systems (CPPSs), system collapse can occur as a result of a failure in a particular component. In this paper, an approach is presented to build the load-capacity model of CPPSs using the concept of electrical betweenness and information entropy, which takes into account real-time node loads and the allocation of power and information flows within CPPSs. By introducing an innovative load redistribution strategy and comparing it with conventional load distribution strategies, the superior effectiveness of the proposed strategy in minimizing system failures and averting system collapses has been demonstrated. The controllability of the system after cascading failures under different coupling strategies and capacity parameters is investigated through the analysis of different information network topologies and network parameters. It was observed that CPPSs constructed using small-world networks, which couple high-degree nodes from the information network to high-betweenness nodes from the power grid, exhibit improved resilience. Furthermore, increasing the capacity parameter of the power network yields more favorable results compared to increasing the capacity parameter of the information network. In addition, our research results are validated using the IEEE 39-node system and the Chinese 132-node system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3