The Beneficial Effect of Selenium-Enriched Broccoli on the Quality Characteristics of Bread

Author:

Martirosyan Vladimir V.1,Kostyuchenko Marina N.1,Kryachko Tatyana I.1,Malkina Valentina D.1,Zhirkova Elena V.2,Golubkina Nadezhda A.3

Affiliation:

1. Scientific Research Institute for the Baking Industry, Bolshaya Cherkizovskaya Street, 26A, 107553 Moscow, Russia

2. Department of Commodity Expertise and Customs Affairs, Higher Engineering School «New Materials and Technologies», Plekhanov Russian University of Economics, Stremyanny Lane, 36, 117997 Moscow, Russia

3. Federal Scientific Vegetable Center, Selectsionnaya 14, 143072 Moscow, Russia

Abstract

Broccoli is one of the most valuable representatives of the Brassicaceae family, characterized by high levels of glucosinolates and fiber, antioxidant status and tolerance to high selenium (Se) concentrations. To evaluate the efficiency of Se-enriched broccoli utilization in bread production, 4% of dry broccoli powder was added to dough using non-fortified and Se-biofortified broccoli florets. The resulting functional products were characterized by enhanced porosity, crump acidity and a specific volume exceeding those of the control bread by 109–110%, 114–121% and 107–112%, respectively, with the lower levels typical to bread with broccoli non-fortified with Se. By supplying broccoli powder to bread, the dietary fiber content of the product was enhanced by 2.1 times. Selenium-enriched broccoli powder supply improved the ascorbic acid and total phenolic content in bread by 37.5 and 2.03 times compared with the control. The effect was less pronounced in case of non-fortified broccoli supplementation due to the beneficial effect of Se on broccoli florets’ antioxidant status. Selenium-enriched broccoli supply significantly decreased the intensity of bread crumb hardening during storage. High Se-biofortification level (5.6) and insignificant Se losses during bread baking (less than 4%) confirm high prospects of Se-enriched broccoli utilization in the production of new functional bread with elevated levels of antioxidants, Se and dietary fiber.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3