Abstract
It is important to conduct research on the soil freeze–thaw process because concurrent adverse effects always occur during this process and can cause serious damage to engineering structures. In this paper, the variation of the impedance signature and the stress wave signal at different temperatures was monitored by using Lead Zirconate Titanate (PZT) transducers through the electromechanical impedance (EMI) method and the active sensing method. Three piezoceramic-based smart aggregates were used in this research. Among them, two smart aggregates were used for the active sensing method, through which one works as an actuator to emit the stress wave signal and the other one works as a sensor to receive the signal. In addition, another smart aggregate was employed for the EMI testing, in which it serves as both an actuator and a receiver to monitor the impedance signature. The trend of the impedance signature with variation of the temperature during the soil freeze–thaw process was obtained. Moreover, the relationship between the energy index of the stress wave signal and the soil temperature was established based on wavelet packet energy analysis. The results demonstrate that the piezoceramic-based electromechanical impedance method is reliable for monitoring the soil freezing and thawing process.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献