A PZT-Based Electromechanical Impedance Method for Monitoring the Soil Freeze–Thaw Process

Author:

Zhang Jicheng,Zhang ChuanORCID,Xiao Jiahao,Jiang Jinwei

Abstract

It is important to conduct research on the soil freeze–thaw process because concurrent adverse effects always occur during this process and can cause serious damage to engineering structures. In this paper, the variation of the impedance signature and the stress wave signal at different temperatures was monitored by using Lead Zirconate Titanate (PZT) transducers through the electromechanical impedance (EMI) method and the active sensing method. Three piezoceramic-based smart aggregates were used in this research. Among them, two smart aggregates were used for the active sensing method, through which one works as an actuator to emit the stress wave signal and the other one works as a sensor to receive the signal. In addition, another smart aggregate was employed for the EMI testing, in which it serves as both an actuator and a receiver to monitor the impedance signature. The trend of the impedance signature with variation of the temperature during the soil freeze–thaw process was obtained. Moreover, the relationship between the energy index of the stress wave signal and the soil temperature was established based on wavelet packet energy analysis. The results demonstrate that the piezoceramic-based electromechanical impedance method is reliable for monitoring the soil freezing and thawing process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3