Explorative Data Analysis Methods: Application to Laser-Induced Breakdown Spectroscopy Field Data Measured on the Island of Vulcano, Italy

Author:

Rammelkamp Kristin1ORCID,Schröder Susanne1ORCID,Pisello Alessandro2ORCID,Ortenzi Gianluigi3,Sohl Frank3ORCID,Unnithan Vikram4ORCID

Affiliation:

1. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Optische Sensorsysteme, 12489 Berlin, Germany

2. Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy

3. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Planetenforschung, 12489 Berlin, Germany

4. Department of Physics and Earth Sciences, Constructor University, 28759 Bremen, Germany

Abstract

One of the strengths of laser-induced breakdown spectroscopy (LIBS) is that a large amount of data can be measured relatively easily in a short time, which makes LIBS interesting in many areas, from geomaterial analysis with portable handheld instruments to applications for the exploration of planetary surfaces. Statistical methods, therefore, play an important role in analyzing the data to detect not only individual compositions but also trends and correlations. In this study, we apply two approaches to explore the LIBS data of geomaterials measured with a handheld device at different locations on the Aeolian island of Vulcano, Italy. First, we use the established method, principal component analysis (PCA), and second we adopt the principle of the interesting features finder (IFF), which was recently proposed for the analysis of LIBS imaging data. With this method it is possible to identify spectra that contain emission lines of minor and trace elements that often remain undetected with variance-based methods, such as PCA. We could not detect any spectra with IFF that were not detected with PCA when applying both methods to our LIBS field data. The reason for this may be the nature of our field data, which are subject to more experimental changes than data measured in laboratory settings, such as LIBS imaging data, for which the IFF was introduced first. In conclusion, however, we found that the two approaches complement each other well, making the exploration of the data more intuitive, straightforward, and efficient.

Funder

DLR

Helmholtz Alliance Robotic Exploration of Extreme Environments

EU Europlanet program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3