Research on Adaptive 1DCNN Network Intrusion Detection Technology Based on BSGM Mixed Sampling

Author:

Ma Wei1,Gou Chao1,Hou Yunyun1

Affiliation:

1. School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

The development of internet technology has brought us benefits, but at the same time, there has been a surge in network attack incidents, posing a serious threat to network security. In the real world, the amount of attack data is much smaller than normal data, leading to a severe class imbalance problem that affects the performance of classifiers. Additionally, when using CNN for detection and classification, manual adjustment of parameters is required, making it difficult to obtain the optimal number of convolutional kernels. Therefore, we propose a hybrid sampling technique called Borderline-SMOTE and Gaussian Mixture Model (GMM), referred to as BSGM, which combines the two approaches. We utilize the Quantum Particle Swarm Optimization (QPSO) algorithm to automatically determine the optimal number of convolutional kernels for each one-dimensional convolutional layer, thereby enhancing the detection rate of minority classes. In our experiments, we conducted binary and multi-class experiments using the KDD99 dataset. We compared our proposed BSGM-QPSO-1DCNN method with ROS-CNN, SMOTE-CNN, RUS-SMOTE-CNN, RUS-SMOTE-RF, and RUS-SMOTE-MLP as benchmark models for intrusion detection. The experimental results show the following: (i) BSGM-QPSO-1DCNN achieves high accuracy rates of 99.93% and 99.94% in binary and multi-class experiments, respectively; (ii) the precision rates for the minority classes R2L and U2R are improved by 68% and 66%, respectively. Our research demonstrates that BSGM-QPSO-1DCNN is an efficient solution for addressing the imbalanced data issue in this field, and it outperforms the five intrusion detection methods used in this study.

Funder

Henan Programs for Science and Technology Development

Henan Province Higher Education Teaching Reform Research and Practice Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3