Rheological Properties, Surface Microhardness, and Dentin Shear Bond Strength of Resin-Modified Glass Ionomer Cements Containing Methacrylate-Functionalized Polyacids and Spherical Pre-Reacted Glass Fillers

Author:

Thepveera Whithipa,Potiprapanpong Wisitsin,Toneluck Arnit,Channasanon SomruethaiORCID,Khamsuk Chutikarn,Monmaturapoj Naruporn,Tanodekaew SiripornORCID,Panpisut PiyaphongORCID

Abstract

The aim of this study was to prepare experimental resin-modified glass ionomer cements (RMGICs) containing low levels of hydroxyethyl methacrylate (HEMA) for pulp protection. Liquid and powder phases of the experimental RMGICs were polyacid functionalized with methacrylate groups and spherical pre-reacted glass fillers (SPG). Two types of liquid phase containing 0 wt. % HEMA (CM liquid) or 5 wt. % HEMA (CMH liquid) were formulated. The experimental RMGICs were prepared by mixing SPG fillers with CM liquid (F1) or CMH liquid (F2). Rheological properties were examined using a strain-controlled rheometer (n = 5). The Vickers microhardness (n = 5) and dentin shear bond strength (SBS) (n = 10) of the materials were tested. Commercial pulp protection materials (Vitrebond and TheraCal LC) were used as comparisons. The viscosity and surface microhardness of F1 (22 m Pa·s, 18 VHN) and F2 (18 m Pa·s, 16 VHN) were significantly higher than those of Vitrebond (6 mPa·s, 6 VHN) and TheraCal (0.1 mPa·s, 7 VHN). The SBS of F1 (10.7 MPa) and F2 (11.9 MPa) was comparable to that of Vitrebond (15.4 MPa) but higher than that of TheraCal LC (5.6 MPa). The addition of 5 wt. % HEMA showed no significant effect on viscosity, surface microhardness, or SBS of the experimental RMGICs. The experimental materials showed higher viscosity and microhardness but similar SBS when compared with the commercial RMGIC.

Funder

Faculty Of Dentistry, Thammasat University

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3