Abstract
The paper proposes a novel hybrid feature selection (FS) method for day-ahead electricity price forecasting. The work presents a novel hybrid FS algorithm for obtaining optimal feature set to gain optimal forecast accuracy. The performance of the proposed forecaster is compared with forecasters based on classification tree and regression tree. A hybrid FS method based on the elitist genetic algorithm (GA) and a tree-based method is applied for FS. Making use of selected features, aperformance test of the forecaster was carried out to establish the usefulness of the proposed approach. By way of analyzing and forecasts for day-ahead electricity prices in the Australian electricity markets, the proposed approach is evaluated and it has been established that, with the selected feature, the proposed forecaster consistently outperforms the forecaster with a larger feature set. The proposed method is simulated in MATLAB and WEKA software.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献