Possibilities and Generated Emissions of Using Wood and Lignin Biofuel for Heat Production

Author:

Chlebnikovas AleksandrasORCID,Paliulis Dainius,Kilikevičius ArtūrasORCID,Selech JaroslawORCID,Matijošius JonasORCID,Kilikevičienė Kristina,Vainorius Darius

Abstract

Energy (including thermal) needs are growing rapidly worldwide thus leading to increased energy production. Considering stricter requirements for the employment of non-renewable energy sources, the use of biofuel in energy facilities appears as one of the best options, having high potential for growth that will increase in the long run both in the Baltic region and the European Union as a whole. This publication investigates the possibilities of using various blends of biofuel containing lignin for heat production and emissions to the air during combustion processes. The paper examines the chemical composition of lignin and bottom ash and explores the impact of a different ratio of lignin in the fuel mixture, the effect of the power of biofuel combustion plants (boilers) and the influence of fuel supply to the combustion chamber on gaseous pollutants (CO, NOx, SO2) and particulate matter emissions. The results of the conducted study demonstrate that, in contrast to pure lignin, the concentrations of alkali metals, boron and, to a lesser extent, nickel and chlorine have increased the most in bottom ash. The use of lignin can effectively reduce the need for conventional biofuel by 30–100% and to increase the temperature of exhaust gases. The lowest emissions have been observed using a mixture of 30% of lignin and biofuel at the lowest range of power (2.5–4 MW). Under the optimal oxygen/temperature mode, carbon monoxide concentrations are approximately 20 mg/Nm3 and those of nitrogen oxides–500 mg/Nm3. Particulate matter emissions reach 150 mg/Nm3, and hence applying air treatment equipment is required.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3