A Novel Control Strategy on Stable Operation of Fuel Gas Supply System and Re-Liquefaction System for LNG Carriers

Author:

Hwang Soon-KyuORCID,Jung Byung-Gun

Abstract

Liquefied natural gas has attracted attention through an explosive increase in demands and environmental requirements. During this period, the Energy Efficiency Design Index (EEDI), which was adopted by the International Maritime Organization, expecting to significantly reduce CO2 from ships, has become an important key. It has triggered a change in use from steam turbine systems and dual fuel diesel electrics to high-efficiency main engines such as ME-GI engines to meet the EEDI requirements. However, since the ME-GI engines use 300 bar of fuel gas pressure, it is necessary to resolve problems of the pressure controllability and to prevent the reductions of the re-liquefaction amount caused by clogging of the lubricant mixed with the fuel gas during the compression. The purpose of this study is to propose a novel control strategy with a newly developed configuration for controlling the pressure so as not to trip the BOG compressors when the ME-GI engines are tripped, and for preventing a reduction on re-liquefaction amount. Unlike the typical configuration used in the current vessels, this proposal separately provides the fuel gas at 150 bar without lubricants to the re-liquefaction. In addition, three control strategies are proposed, depending upon the application of multi-controllers and the location of the pressure transmitters. A simulation was conducted to verify the efficacy of the proposed method, focusing on the controllability of the pressure and the re-liquefaction amount, in comparison with the typical configuration. As results of the simulation, the proposal showed excellent controllability without trips of the BOG compressors even in abnormal conditions and confirmed the great re-liquefaction performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. Natural gas as a marine fuel

2. The reduction of SOx emissions in the shipping industry: The case of Korean companies

3. Potential power setups, fuels and hull designs capable of satisfying future EEDI requirements

4. Air Pollutionhttps://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Default.aspx

5. Energy Efficiency Measureshttp://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Technical-and-Operational-Measures.aspx

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3