The Feasibility of Using Zero-Emission Electric Boats to Enhance the Techno-Economic Performance of an Ocean-Energy-Supported Coastal Hotel Building

Author:

Guo Xinman,Cao Sunliang,Xu YangORCID,Zhu XiaolinORCID

Abstract

The topics of zero-emission/energy buildings and electric mobility are increasingly being discussed as solutions to alleviate the environmental burden caused by energy consumption and CO2 emissions in both sectors. This study investigates a zero-energy hotel building supported by a hybrid ocean renewable energy system, which interacts with several zero-emission electric boats. Nine different combinations of floating photovoltaics (FPV) and wave energy converters (WEC) are investigated to compensate for their different fluctuations and the stochasticity of energy generation. Using TRNSYS 18 to perform modeling and simulation, a comprehensive techno-economic-environmental analysis of the hybrid system was conducted. The results indicate that when the total annual generation ratios of WEC and FPV are 76% and 24%, respectively, this combination can achieve the best energy weighted matching index (WMI). The WMI reached its maximum (0.703) when 16 boats were sailing at 15 km/h for a distance of 7.5 km. However, increasing the number of boats to 16 does not help improve economic returns or reduce the annual operational equivalent CO2 emission factor of the hybrid system. Depending on the maximum number of electric boats designed for this study, the non-dominated WMI would be limited to 0.654.

Funder

RISUD EFA funding

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference64 articles.

1. 2019 Global Status Report for Buildings and Construction,2019

2. Hong Kong Energy End-Use Data 2020,2020

3. Hong Kong’s Climate Action Plan 2030+. Environmental Bureau,2017

4. The Paris Agreement,2015

5. Nearly Zero-Energy Buildings,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3