Nonlinear Moving Boundary Model of Low-Permeability Reservoir

Author:

Jiao Xiarong,Jiang Shan,Liu Hong

Abstract

At present, there are two main methods for solving oil and gas seepage equations: analytical and numerical methods. In most cases, it is difficult to find the analytical solution, and the numerical solution process is complex with limited accuracy. Based on the mass conservation equation and the steady-state sequential substitution method, the moving boundary nonlinear equations of radial flow under different outer boundary conditions are derived. The quasi-Newton method is used to solve the nonlinear equations. The solutions of the nonlinear equations with an infinite outer boundary, constant pressure outer boundary and closed outer boundary are compared with the analytical solutions. The calculation results show that it is reliable to solve the oil-gas seepage equation with the moving boundary nonlinear equation. To deal with the difficulty in solving analytical solutions for low-permeability reservoirs and numerical solutions of moving boundaries, a quasi-linear model and a nonlinear moving boundary model were proposed based on the characteristics of low-permeability reservoirs. The production decline curve chart of the quasi-linear model and the recovery factor calculation chart were drawn, and the sweep radius calculation formula was also established. The research results can provide a theoretical reference for the policy-making of development technology in low-permeability reservoirs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. Les Fontaines Publiques de La Ville de Dijon;Darcy,1865

2. Dynamic of Fluid in Porous Media;Bear,1972

3. Modification of Darcy's law for the threshold pressure gradient

4. Porous Media Transport Phenomena;Civan,2011

5. Dynamic threshold pressure gradient in tight gas reservoir and its influence on well productivity

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3