Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities

Author:

Talluri GiacomoORCID,Lozito Gabriele MariaORCID,Grasso FrancescoORCID,Iturrino Garcia CarlosORCID,Luchetta AntonioORCID

Abstract

In this work, a strategy for scheduling a battery energy storage system (BESS) in a renewable energy community (REC) is proposed. RECs have been defined at EU level by the 2018/2001 Directive; some Member States transposition into national legislation defined RECs as virtual microgrids since they still use the existing low voltage local feeder and share the same low-medium voltage transformer. This work analyzes a REC which assets include PV generators, BESS and non-controllable loads, operating under the Italian legislative framework. A methodology is defined to optimize REC economic revenues and minimize the operation costs during the year. The proposed BESS control strategy is composed by three different modules: (i) a machine learning-based forecast algorithm that provides a 1-day-ahead projection for microgrid loads and PV generation, using historical dataset and weather forecasts; (ii) a mixed integer linear programming (MILP) algorithm that optimizes the BESS scheduling for minimal REC operating costs, taking into account electricity price, variable feed-in tariffs for PV generators, BESS costs and maximization of the self-consumption; (iii) a decision tree algorithm that works at the intra-hour level, with 1 min timestep and with real load and PV generation measurements adjusting the BESS scheduling in real time. Validation of the proposed strategy is performed on data acquired from a real small-scale REC set up with an Italian energy provider. A 10% average revenue increase could be obtained for the prosumer alone when compared to the non-optimized BESS usage scenario; such revenue increase is obtained by reducing the BESS usage by around 30% when compared to the unmanaged baseline scenario.

Funder

Regione Toscana

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference64 articles.

1. The EU Clean Energy Package;Nouicer,2020

2. European Commissionhttps://ec.europa.eu/clima/citizens/support_en

3. European Commissionhttps://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF

4. European Parliament. Directive (EU) 2018/2001 on the promotion of the use of energy from renewable sources (recast);Off. J. Eur. Union,2018

5. Directive (EU) 2019/944—On common rules for the internal market for electricity and amending Directive 2012/27/EU (recast);Off. J. Eur. Union,2019

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3