Enhanced Evolutionary Sizing Algorithms for Optimal Sizing of a Stand-Alone PV-WT-Battery Hybrid System

Author:

Khan AsifORCID,Alghamdi TurkiORCID,Khan ZahoorORCID,Fatima AishaORCID,Abid Samia,Khalid AdiaORCID,Javaid Nadeem

Abstract

An increase in the world’s population results in high energy demand, which is mostly fulfilled by consuming fossil fuels (FFs). By nature, FFs are scarce, depleted, and non-eco-friendly. Renewable energy sources (RESs) photovoltaics (PVs) and wind turbines (WTs) are emerging alternatives to the FFs. The integration of an energy storage system with these sources provides promising and economical results to satisfy the user’s load in a stand-alone environment. Due to the intermittent nature of RESs, their optimal sizing is a vital challenge when considering cost and reliability parameters. In this paper, three meta-heuristic algorithms: teaching-learning based optimization (TLBO), enhanced differential evolution (EDE), and the salp swarm algorithm (SSA), along with two hybrid schemes (TLBO + EDE and TLBO + SSA) called enhanced evolutionary sizing algorithms (EESAs) are proposed for solving the unit sizing problem of hybrid RESs in a stand-alone environment. The objective of this work is to minimize the user’s total annual cost (TAC). The reliability is considered via the maximum allowable loss of power supply probability ( L P S P m a x ) concept. The simulation results reveal that EESAs provide better results in terms of TAC minimization as compared to other algorithms at four L P S P m a x values of 0%, 0.5%, 1%, and 3%, respectively, for a PV-WT-battery hybrid system. Further, the PV-WT-battery hybrid system is found as the most economical scenario when it is compared to PV-battery and WT-battery systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3