Abstract
An increase in the world’s population results in high energy demand, which is mostly fulfilled by consuming fossil fuels (FFs). By nature, FFs are scarce, depleted, and non-eco-friendly. Renewable energy sources (RESs) photovoltaics (PVs) and wind turbines (WTs) are emerging alternatives to the FFs. The integration of an energy storage system with these sources provides promising and economical results to satisfy the user’s load in a stand-alone environment. Due to the intermittent nature of RESs, their optimal sizing is a vital challenge when considering cost and reliability parameters. In this paper, three meta-heuristic algorithms: teaching-learning based optimization (TLBO), enhanced differential evolution (EDE), and the salp swarm algorithm (SSA), along with two hybrid schemes (TLBO + EDE and TLBO + SSA) called enhanced evolutionary sizing algorithms (EESAs) are proposed for solving the unit sizing problem of hybrid RESs in a stand-alone environment. The objective of this work is to minimize the user’s total annual cost (TAC). The reliability is considered via the maximum allowable loss of power supply probability ( L P S P m a x ) concept. The simulation results reveal that EESAs provide better results in terms of TAC minimization as compared to other algorithms at four L P S P m a x values of 0%, 0.5%, 1%, and 3%, respectively, for a PV-WT-battery hybrid system. Further, the PV-WT-battery hybrid system is found as the most economical scenario when it is compared to PV-battery and WT-battery systems.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献