Author:
Kuznetsov Geniy,Kralinova Svetlana,Voytkov Ivan,Islamova Anastasia
Abstract
Differences in the rates of heating and evaporation of droplets with the component composition are important parameters of heat transfer processes and phase transformations. This paper presents the values of high-temperature (up to 600 °C) evaporation rates of droplets of promising fire-extinguishing compositions (water, bentonite suspension, bischofite solution, EA-5 solution, and foaming agent emulsion) at convective (in the air stream), conductive (on a heated surface), and radiation (in a muffle furnace) heating. A high-speed video recording system and tracking software algorithms are used. At identical initial sizes of droplets of fire-extinguishing suspensions, known as emulsions and solutions, the times of their complete evaporation are shown to differ 3.7 times when heating on the substrate, 1.25 times in the air flow, and 1.9 times in the muffle furnace. A general approximation expression is formulated, and the empirical constants are calculated to predict the evaporation rate of the droplets of extinguishing agents in a wide range of temperatures (up to 600 °C) and heat fluxes (up to 100 kW/m2), which are characteristic of forest fires. With the use of the experimental data obtained, it is possible to predict the completeness of evaporation of promising extinguishing liquids at different schemes of heat supply.
Funder
Russian Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献