Effects of Pumice-Based Porous Material on Hydration Characteristics and Persistent Shrinkage of Ultra-High Performance Concrete (UHPC)

Author:

Liu Kaizhi,Yu Rui,Shui Zhonghe,Li Xiaosheng,Ling Xuan,He Wenhao,Yi Shuangqin,Wu Shuo

Abstract

In this paper, two kinds of pumice particles with different diameters and water absorption rates are employed to substitute the corresponding size of river sands by volume fraction, and their effects on the hydration characteristics and persistent shrinkage of Ultra-High Performance Concrete (UHPC) are investigated. The obtained experimental results show that adopting a low dosage of 0.6–1.25 mm saturated pumice as the internal curing agent in UHPC can effectively retract the persistent shrinkage deformation of concrete without a decrease of strength. Heat flow calorimetry results demonstrate that the additional water has a retarding effect and promotes the hydration process. X-ray Diffraction (XRD) and Differential Thermal Gravimetry (DTG) are utilized to quantify the Ca(OH)2 content in the hardened paste, which can confirm that the external moisture could accelerate the early cement hydration and secondary hydration of active mineral admixtures. The Ca/Si ratio of C–S–H calculated by the Energy Dispersive Spectrometer (EDS) reveals that the incorporation of wet pumice can transform the composition and structure of hydration products in its effective area.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3