Structural Transformations of Hydrolysates Obtained from Ti-, Zr-, and Ti, Zr-Solutions Used for Clay Pillaring: Towards Understanding of the Mixed Pillars Nature

Author:

Bahranowski Krzysztof,Klimek Agnieszka,Gaweł Adam,Górniak Katarzyna,Michalik Alicja,Serwicka-Bahranowska EwaORCID

Abstract

Structural characteristics of hydrolysates formed from the aqueous Ti-, Zr-, and Ti, Zr-pillaring solutions prepared from inorganic precursors (TiCl4 and ZrOCl2), was investigated and compared with that of precipitates obtained from the same solutions after a slight alkalization of pH to the values reported for the conditions of clay pillaring. The materials were recovered by lyophilization and subsequently subjected to calcination at 500, 800 and 1000 °C. Of special interest was the effect of pH on the possible formation of mixed Ti, Zr-oxide species. Powder X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) analysis showed that even a relatively moderate alteration of pH in Ti-, Zr-, or Ti, Zr-precursor solutions caused substantial changes in the outcome of hydrolytic transformations, manifested by different phase and/or chemical composition of the resulting hydrolysates. Analysis of thermal evolution of hydrolysates showed that alkalization facilitated the transformation of anatase into rutile in materials obtained from Ti-pillaring solution, but retarded tetragonal to monoclinic zirconia conversion in samples derived from Zr-pillaring agent. The most striking effect was observed for the mixed Ti, Zr-pillaring solution, where an increase of pH enabled the formation of zirconium titanate as the only crystalline phase, rather than a multiphase mixture of anatase, monoclinic zirconia and zirconium titanate obtained from the more acidic precursor. The finding supports the model of mixed Ti-O-Zr network in props generated in Ti, Zr-pillared montmorillonites.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3