Impacts of Defocusing Amount and Molten Pool Boundaries on Mechanical Properties and Microstructure of Selective Laser Melted AlSi10Mg

Author:

Zhou Suyuan,Su Yang,Gu Rui,Wang Zhenyu,Zhou Yinghao,Ma Qian,Yan Ming

Abstract

The influences of processing parameters such as volumetric energy density (ε) and, particularly, defocusing amount (DA) on densification, microstructure, tensile property, and hardness of the as-printed dense AlSi10Mg alloy by selective laser melting (SLM) were studied systematically. The molten pool boundaries (MPBs) were found overwhelmingly at regular and complex spatial topological structures affected by DA value to exist in two forms, while the “layer–layer” MPB overlay mutually and the “track–track” MPBs intersect to form acute angles with each other. The microstructure of MPBs exhibits a coarse grain zone near the MPBs and the characteristics of segregation of nonmetallic elements (O, Si) where the crack easily happened. The DA value (−2 to 2 mm) affected both the density and the tensile mechanical properties. High tensile strength (456 ± 14 MPa) and good tensile ductility (9.5 ± 1.4%) were achieved in the as-printed condition corresponding to DA = 0.5 mm. The tensile fracture surface features were analyzed and correlated to the influence of the DA values.

Funder

Shenzhen Science and Technology Innovation Commission

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. 3-D printing: The new industrial revolution

2. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing;Stucker,2014

3. Review of selective laser melting: Materials and applications

4. Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms;Gu,2015

5. Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3