Transcriptome Analysis Reveals the Potential Role of Long Noncoding RNAs in Regulating Fowl Adenovirus Serotype 4-Induced Apoptosis in Leghorn Male Hepatocellular Cells

Author:

Wen Bo,Wang Xueping,Yang Lulu,Wang Ting,Hou Xiaolan,Qi Xuefeng,Wang Jingyu

Abstract

Hepatitis-hydropericardium syndrome (HHS) is caused by fowl adenovirus serotype 4 (FAdV-4) and has resulted in considerable economic losses to the poultry industry globally. FAdV-4 elicits apoptosis in host cells. Long noncoding RNAs (lncRNAs) have emerged as important regulatory RNAs with profound effects on various biological processes, including apoptosis. However, it remains unknown whether lncRNAs participate in FAdV-4-induced apoptosis. In this study, RNA sequencing was applied to determine the transcription of cellular lncRNA in leghorn male hepatocellular (LMH) cells infected with FAdV-4. Cellular RNA transcription analysis demonstrated that FAdV-4 infection elicited 1798 significantly differentially expressed (DE) lncRNAs in infected LMH cells at 24 h post-infection (hpi) compared to mock control infection. In addition, 2873 DE mRNAs were also found. Target prediction and analyses revealed that 775 DE lncRNAs whose 671 target mRNAs were among the DE mRNAs were involved in several signaling pathways, including the AMPK signaling pathway, p53 signaling pathway and insulin signaling pathway. From these 775 DE lncRNAs, we identified 71 DE lncRNAs related to apoptosis based on their target gene functions. Subsequently, lncRNA 54128 was selected from the 71 identified DE lncRNAs, and its role in FAdV-4-induced apoptosis was verified. LncRNA 54128 interference significantly suppressed the rate of apoptosis, which was accompanied by reduced BMP4 transcription levels. To the best of our knowledge, this is the first study to analyze host lncRNA transcription during FAdV-4 infection. Our findings provide a better understanding of host responses to FAdV-4 infection and provide new directions for understanding the potential association between lncRNAs and FAdV-4 pathogenesis.

Funder

Shaanxi Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3