Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis

Author:

Wang XiaodongORCID,Liu Feng

Abstract

Recently, deep learning methods are becomingincreasingly popular in the field of fault diagnosis and achieve great success. However, since the rotation speeds and load conditions of rotating machines are subject to change during operations, the distribution of labeled training dataset for intelligent fault diagnosis model is different from the distribution of unlabeled testing dataset, where domain shift occurs. The performance of the fault diagnosis may significantly degrade due to this domain shift problem. Unsupervised domain adaptation has been proposed to alleviate this problem by aligning the distribution between labeled source domain and unlabeled target domain. In this paper, we propose triplet loss guided adversarial domain adaptation method (TLADA) for bearing fault diagnosis by jointly aligning the data-level and class-level distribution. Data-level alignment is achieved using Wasserstein distance-based adversarial approach, and the discrepancy of distributions in feature space is further minimized at class level by the triplet loss. Unlike other center loss-based class-level alignment approaches, which hasto compute the class centers for each class and minimize the distance of same class center from different domain, the proposed TLADA method concatenates 2 mini-batches from source and target domain into a single mini-batch and imposes triplet loss to the whole mini-batch ignoring the domains. Therefore, the overhead of updating the class center is eliminated. The effectiveness of the proposed method is validated on CWRU dataset and Paderborn dataset through extensive transfer fault diagnosis experiments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3