Analysis of Machinability on Properties of Inconel 718 Wire and Arc Additive Manufacturing Products

Author:

Quadra Vieira dos Santos Gustavo1,Kaneko Jun’ichi1,Abe Takeyuki1ORCID

Affiliation:

1. Department of Science and Engineering, Saitama University, Shimo-Ohkubo, Sakura Ward, 255, Saitama 338-8570, Japan

Abstract

Wire and arc additive manufacturing (WAAM) is a metal deposition technique with a fast rate and the possibility of a high volume of deposition. Because of its fast deposition and high heat input, the manufactured products have poor surface quality. This paper presents a study on the machining of Inconel 718 wall-shaped additive manufacturing (AM) products, a necessary step for the improvement of surface quality. Considering the possibility that the characteristics of the milling processes of AM products might differ from those of traditionally manufactured parts, in this research, two types of Inconel 718 were studied and compared: one was manufactured using WAAM, and the other was an Inconel 718 rolled bar (Aerospace Material Specifications 5662). Using the testing procedure, a conventional two-flute cutting tool was used to assess their machinability. For this process, multiple passes were performed at three different heights of the samples. Considering the peculiarities of the AM products, such as their uneven surfaces, dendritic microstructures, and anisotropy, the results were analyzed. After the machining operation, the effects on the products were also studied by analyzing their surface quality. This study found a higher stability in the cutting process for the AMS 5662 samples relative to the WAAM parts with less variability in the cutting forces overall, resulting in better surface quality.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3