Angle Dependence of Electrode Lead-Related Artifacts in Single- and Dual-Energy Cardiac ECG-Gated CT Scanning—A Phantom Study

Author:

Tarkowski Piotr1ORCID,Siek Elżbieta23ORCID,Staśkiewicz Grzegorz23,Bielecki Dennis K.4,Czekajska-Chehab Elżbieta1ORCID

Affiliation:

1. Department of Radiology, Medical University of Lublin, 20-090 Lublin, Poland

2. Department of Clinical and Radiological Anatomy, Medical University of Lublin, 20-090 Lublin, Poland

3. Department of Radiology and Nuclear Medicine, University Hospital No 4, 20-090 Lublin, Poland

4. Department of Diagnostic Imaging, Kings College Hospital, London SE5 9RS, UK

Abstract

Background: The electrodes of implantable cardiac devices (ICDs) may cause significant problems in cardiac computed tomography (CT) because they are a source of artifacts that obscure surrounding structures and possible pathology. There are a few million patients currently with ICDs, and some of these patients will require cardiac imaging due to coronary artery disease or problems with ICDs. Modern CT scanners can reduce some of the metal artifacts because of MAR software, but in some vendors, it does not work with ECG gating. Introduced in 2008, dual-energy CT scanners can generate virtual monoenergetic images (VMIs), which are much less susceptible to metal artifacts than standard CT images. Objective: This study aimed to evaluate if dual-energy CT can reduce metal artifacts caused by ICD leads by using VMIs. The second objective was to determine how the angle between the electrode and the plane of imaging affects the severity of the artifacts in three planes of imaging. Methods: A 3D-printed model was constructed to obtain a 0–90-degree field at 5-degree intervals between the electrode and each of the planes: axial, coronal, and sagittal. This electrode was scanned in dual-energy and single-energy protocols. VMIs with an energy of 40–140 keV with 10 keV intervals were reconstructed. The length of the two most extended artifacts originating from the tip of the electrode and 2 cm above it—at the point where the thick metallic defibrillating portion of the electrode begins—was measured. Results: For the sagittal plane, these observations were similar for both points of the ICDs that were used as the reference location. VMIs with an energy over 80 keV produce images with fewer artifacts than similar images obtained in the single-energy scanning mode. Conclusions: Virtual monoenergetic imaging techniques may reduce streak artifacts arising from ICD electrodes and improve the quality of the image. Increasing the angle of the electrode as well as the imaging plane can reduce artifacts. The angle between the electrode and the beam of X-rays can be increased by tilting the gantry of the scanner or lifting the upper body of the patient.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3