Hydrothermal Carbonization of Chemical and Biological Pulp Mill Sludges

Author:

Mendoza Martinez Clara LissethORCID,Sermyagina EkaterinaORCID,Vakkilainen EsaORCID

Abstract

A modern pulp mill generates a variety of different by-products and waste streams, some of these can be recycled, refined, sold, or used on-site for energy production. However, some, such as chemical and biological sludges produced in wastewater treatment cannot be reused or disposed of easily, mainly due to their high moisture content and poor drying characteristics. Tightening legislation regarding waste disposal as well as the growing need to increase the process efficiencies of pulp mills act as driving forces to find environmentally friendly and energy-efficient techniques for pulp mill sludge treatment. This study summarizes the current methods for pulp mill sludge handling and evaluates the potential of hydrothermal carbonization (HTC), a conversion process through which wet organic substrates can be transformed into a carbonaceous material (hydrochar). Depending on the process parameters, the material’s structure is modified, enabling hydrochar use in energy, soil conditioning and adsorption applications. The sludges were hydrothermally carbonized at 180, 200, 220 and 240 °C for 3 h. The hydrochar and liquid products’ main properties were analyzed. Their potential applications were also evaluated. The effective treatment of sludges from the pulp industry with HTC could transform energy-demanding waste into a value-added source of materials.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3