Design and Characteristic Analysis of a Homopolar Synchronous Machine Using a NI HTS Field Coil

Author:

Hwang Young JinORCID

Abstract

This paper deals with a homopolar synchronous machine (HSM) applying high-temperature superconducting (HTS) field coils. Superconductors, especially high-temperature superconductors, have high potential as advanced materials for next-generation electrical machines due to their high critical current density and excellent mechanical strength. However, coils made with high-temperature superconductors have a high risk of being damaged in the event of a quench due to the intrinsic low normal zone propagation velocity (NZPV). Therefore, the coil protection issue has been regarded as one of the most important research fields in HTS coil applications. Currently, the most actively studied method for quench protection of the HTS coils is the no-insulation (NI) winding technique. The NI winding technique is a method of winding an HTS coil without inserting an insulating material between turns. This method can automatically bypass the current to the adjacent turn when a local quench occurs inside the HTS coil, greatly improving the operating stability of the HTS coils. Accordingly, many institutions are conducting research to develop advanced electrical machines using NI HTS coils. However, the NI HTS coil has its intrinsic charge/discharge delay problem, which makes it difficult to successfully develop electrical machines using the NI HTS coil. In this study, we investigated how this charging/discharging problem appeared when the NI HTS coil was used in an HTS homopolar synchronous machine (HSM) which is one of the electrical machines with a high possibility of applying the HTS coil in the future because it has a stationary field coil structure. For this, the characteristic resistances of HTS coils were experimentally obtained and applied to the simulation model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3