Expected Recurrence of Extreme Winds in Northwestern Sahara and Associated Uncertainties

Author:

García Bustamante ElenaORCID,González Rouco J. Fidel,Navarro Jorge,Lucio Eceiza Etor E.,Rojas Labanda Cristina

Abstract

Estimating the probability of the occurrence of hazardous winds is crucial for their impact in human activities; however, this is inherently affected by the shortage of observations. This becomes critical in poorly sampled regions, such as the northwestern Sahara, where this work is focused. The selection of any single methodological variant contributes with additional uncertainty. To gain robustness in the estimates, we expand the uncertainty space by applying a large body of methodologies. The methodological uncertainty is constrained afterward by keeping only the reliable experiments. In doing so, we considerably narrow the uncertainty associated with the wind return levels. The analysis suggest that not necessarily all methodologies are equally robust. The highest 10-min speed (wind gust) for a return period of 50 years is about 45 ms−1 (56 ms−1). The intensity of the expected extreme winds is closely related to orography. The study is based on wind and wind gust observations that were collected and quality controlled for the specific purposes herein. We also make use of a 12-year high-resolution regional simulation to provide simulation-based wind return level maps that endorse the observation-based results. Such an exhaustive methodological sensitivity analysis with a long high-resolution simulation over this region was lacking in the literature.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surface wind over Europe: Data and variability;International Journal of Climatology;2022-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3