Injection Treatment for Tunneling Excavation in Sandy Soils with High Fines Content

Author:

González-García Johnatan,González-Nicieza Celestino,Álvarez-Fernández Martina-InmaculadaORCID,Prendes-Gero María-BelénORCID

Abstract

Instability and high permeability are two of the problems facing tunnelling excavations in soils with high fines content. Among the different techniques used to improve these soils, the injection of cement grouts stands out. In this work, a grouting treatment is designed to ensure the stability of the ground during the construction of two tunnels linking two municipalities in the north of Spain in Biscay, and to reduce the inflow of water from the aquifer located in the vicinity of these tunnels. First of all, the rock mass is analysed and the material to be injected is selected on the basis of the authors’ experience as well as setting time and compressive strength. Subsequently, with a test device designed by the DinRock research group of the University of Oviedo, two types of laboratory tests are carried out in order to analyse the effect of fines migration and washing on the water flows and the effect of re-injections of grouts with different densities on the permeability value. The results show that, in sandy materials, obtaining high degrees of waterproofing together with large stable zones can only be achieved by a combination of treatments and stages with different materials and densities. In addition, maximum values for both injection pressure and flow rate must be established depending on the type of grout and the permeability of the soil. Once the problem has been analysed, the injection treatment is designed and executed. The treatment consists of one pre-injection in four stages with 30 boreholes drilled in the top heading, 19–20 boreholes drilled in the bench, and one post-injection with boreholes drilled around the perimeter of the tunnel in those areas where the pre-injection does not achieve the desired degree of waterproofing.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3