Long-Term Performance Analysis Using TRNSYS Software of Hybrid Systems with PV-T

Author:

Pater SebastianORCID

Abstract

A hybrid photovoltaic-thermal collector (PV-T) with the capability to produce thermal energy and electrical energy simultaneously has attracted the attention of researchers, especially in terms of improving PV-T performance. This study analyses the work of four model installations with PV-T and other devices built in the transient systems simulation program. The novelty of this article lies in a long-term approach to the operation of PV-T panels under selected climatic conditions. Influence of the installation’s configuration on the obtained temperatures of solar cells, and, in consequence, on electric power generated by PV-T and the amount of heat produced during one year in a selected location is presented. Among others, the impact of the temperature coefficient of photovoltaic cells for long-term PV-T operation was analyzed in the paper. The results showed that the type of cell used may decrease the yearly electric energy production from PV-T even by 7%. On the other hand, intensification of the process of heat reception from PV-T using a heat pump increased this production by 6% in relation to the base model. The obtained research results indicate possible methods for improving the effectiveness of PV-T operation in a long-term aspect.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3