Analysis for Non-Residential Short-Term Load Forecasting Using Machine Learning and Statistical Methods with Financial Impact on the Power Market

Author:

Ungureanu StefanORCID,Topa Vasile,Cziker Andrei Cristinel

Abstract

Short-term load forecasting predetermines how power systems operate because electricity production needs to sustain demand at all times and costs. Most load forecasts for the non-residential consumers are empirically done either by a customer’s employee or supplier personnel based on experience and historical data, which is frequently not consistent. Our objective is to develop viable and market-oriented machine learning models for short-term forecasting for non-residential consumers. Multiple algorithms were implemented and compared to identify the best model for a cluster of industrial and commercial consumers. The article concludes that the sliding window approach for supervised learning with recurrent neural networks can learn short and long-term dependencies in time series. The best method implemented for the 24 h forecast is a Gated Recurrent Unit (GRU) applied for aggregated loads over three months of testing data resulted in 5.28% MAPE and minimized the cost with 5326.17 € compared with the second-best method LSTM. We propose a new model to evaluate the gap between evaluation metrics and the financial impact of forecast errors in the power market environment. The model simulates bidding on the power market based on the 24 h forecast and using the Romanian day-ahead market and balancing prices through the testing dataset.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multivariate Time Series Forecasting Based on Sliding Attention Correction LSTM Network;2024 4th International Conference on Consumer Electronics and Computer Engineering (ICCECE);2024-01-12

2. An Analysis of the Hyperbolic Bid Stacking Technique's Use in Modeling Power Prices;Proceedings of the 6th International Conference on Information Technologies and Electrical Engineering;2023-11-03

3. Attention-Ordering LSTM for Financial Time Series Forecasting;2023 7th International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE);2023-10-20

4. Short-Term Electrical Load Forecasting Based on the DeepAR Algorithm and Industry-Specific Electricity Consumption Characteristics;2023 7th International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE);2023-10-20

5. Lagging problem in financial time series forecasting;Neural Computing and Applications;2023-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3