Efficient Cell Impedance Measurement by Dielectrophoretic Cell Accumulation and Evaluation of Chondrogenic Phenotypes

Author:

Nakata Natsumi,Ishibashi Yuko,Miyata ShogoORCID

Abstract

The quantitative and functional analyses of cells are important for cell-based therapies. In this study, to establish the quantitative cell analysis method, we propose an impedance measurement method supported by dielectrophoretic cell accumulation. An impedance measurement and dielectrophoresis device was constructed using opposing comb-shaped electrodes. Using dielectrophoresis, cells were accumulated to form chain-like aggregates on the electrodes to improve the measurement sensitivity of the electrical impedance device. To validate the proposed method, the electrical impedance and capacitance of primary and de-differentiated chondrocytes were measured. As a result, the impedance of the chondrocytes decreased with an increase in the passage number, whereas the capacitance increased. Therefore, the impedance measurement method proposed in this study has the potential to identify chondrocyte phenotypes.

Funder

Adaptable and Seamless Technology Transfer Program through Target-Driven R&D

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3