Abstract
In this paper, a novel high voltage superjunction lateral double diffused MOSFETs (SJ-LDMOS) using a variable high permittivity (VHK) dielectric trench is presented. A relatively high HK dielectric is in the upper trench, which is connected with the drain electrode to suppress the high electric field (E-field) peak under the drain by the dielectric reduced surface field (RESURF) effect. In addition, a relatively low HK dielectric is at the bottom of the trench. On the one hand, the substrate is effectively depleted by a suitable HK dielectric layer, and the vertical depletion region of the substrate is greatly expanded. On the other hand, the overall vertical bulk E-field distribution is modulated by the E-field peaks generated at the position of varying K dielectric. A more uniform bulk E-field distribution is obtained for VHK SJ-LDMOS, leading to a high breakdown voltage (BV). Compared to the conventional SJ-LDMOS, the blocking voltage per micron of the drift region of VHK SJ-LDMOS has increased by 41.2%. Besides, compared with the SJ-LDMOS with a uniform-K, the BV of VHK SJ-LDMOS is improved by about 9.5%. The condition of the optimal range of the variable high permittivity is also presented. Meanwhile, the proposed VHK SJ-LDMOS has good conduction characteristics and heat dissipation
Funder
China Postdoctoral Science Foundation
Natural Science Basic Research Program of Shaanxi
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献